首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7139篇
  免费   1371篇
  国内免费   757篇
电工技术   216篇
综合类   554篇
化学工业   1242篇
金属工艺   167篇
机械仪表   343篇
建筑科学   145篇
矿业工程   73篇
能源动力   532篇
轻工业   192篇
水利工程   36篇
石油天然气   176篇
武器工业   50篇
无线电   2250篇
一般工业技术   1251篇
冶金工业   236篇
原子能技术   107篇
自动化技术   1697篇
  2024年   27篇
  2023年   241篇
  2022年   302篇
  2021年   376篇
  2020年   329篇
  2019年   292篇
  2018年   261篇
  2017年   322篇
  2016年   333篇
  2015年   335篇
  2014年   465篇
  2013年   479篇
  2012年   608篇
  2011年   621篇
  2010年   470篇
  2009年   481篇
  2008年   462篇
  2007年   465篇
  2006年   443篇
  2005年   340篇
  2004年   268篇
  2003年   223篇
  2002年   162篇
  2001年   175篇
  2000年   144篇
  1999年   107篇
  1998年   91篇
  1997年   65篇
  1996年   90篇
  1995年   55篇
  1994年   27篇
  1993年   27篇
  1992年   25篇
  1991年   28篇
  1990年   19篇
  1989年   20篇
  1988年   14篇
  1987年   9篇
  1986年   10篇
  1985年   9篇
  1984年   10篇
  1983年   8篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1976年   3篇
  1956年   1篇
  1951年   2篇
排序方式: 共有9267条查询结果,搜索用时 140 毫秒
1.
Understanding energy transport in metal halide perovskites is essential to effectively guide further optimization of materials and device designs. However, difficulties to disentangle charge carrier diffusion, photon recycling, and photon transport have led to contradicting reports and uncertainty regarding which mechanism dominates. In this study, monocrystalline CsPbBr3 nanowires serve as 1D model systems to help unravel the respective contribution of energy transport processes in metal-halide perovskites. Spatially, temporally, and spectrally resolved photoluminescence (PL) microscopy reveals characteristic signatures of each transport mechanism from which a robust model describing the PL signal accounting for carrier diffusion, photon propagation, and photon recycling is developed. For the investigated CsPbBr3 nanowires, an ambipolar carrier mobility of μ = 35 cm2 V−1 s−1 is determined, and is found that charge carrier diffusion dominates the energy transport process over photon recycling. Moreover, the general applicability of the developed model is demonstrated on different perovskite compounds by applying it to data provided in previous related reports, from which clarity is gained as to why conflicting reports exist. These findings, therefore, serve as a useful tool to assist future studies aimed at characterizing energy transport mechanisms in semiconductor nanowires using PL.  相似文献   
2.
Phosphors-converted LEDs (pc-LEDs) are excellent artificial light sources for indoor plant cultivation, in which the far-red-emitting component (700−780 nm) plays an important role in regulating the photomorphogenesis of plants. Accordingly, highly efficient and thermally stable far-red-emitting phosphors are indispensable for developing high-performance plant cultivation pc-LEDs. Herein, far-red-emitting YAl3(BO3)4:Cr3+ (YAB:Cr3+) phosphors were synthesized by solid-state reaction, and their photoluminescence characteristics, thermal quenching, quantum yield (QY), and application in pc-LEDs were systematically investigated. The YAB:Cr3+ phosphor has an intense broadband absorption to the blue light, simultaneously exhibiting the sharp-line 2E emission and the broadband T2 emission of Cr3+ with a QY of ~86.7%. The far-red broadband emissions of YAB:Cr3+ centered at ~735 nm show a high resemblance to the active-state (PFR) absorption of plant phytochrome. Moreover, the YAB:Cr3+ phosphor shows the thermally enhanced luminescence at temperatures of 303−393 K and the near-zero thermal quenching up to 423 K. The anomalous thermal enhancement is attributed to the temperature-dependent repopulation between 2E and T2 states. Finally, a pc-LED device was fabricated with the YAB:Cr3+ phosphor and blue chip, exhibiting the light out power of ~50.6 mW and energy conversion efficiency of ~17.4% at 100 mA drive current, respectively. The exceptional PL features including suitable excitation/emission wavelengths, suppressed thermal quenching and high QY make YAB:Cr3+ phosphors very promising for applications in plant growth pc-LEDs.  相似文献   
3.
The rapid increase in energy consumption has severely rehabilitated human life urging to develop reliable and environmental friendly energy storage devices. Target oriented, systematic approach has been adopted to synthesis La doped CeO2 nanostructures with percentage as LaxCe1-xO2 (X = 0,1,3,5,7) for potential super capacitors applications. Morphological doping impact on H2 production, electrochemical and optical properties are thoroughly investigated. XRD studies revealed the crystalline phase purity and attained approximately 35 nm average crystallite size. The SEM images exposed that primary morphology nano-particles has been tuned into nanorods by increasing the La concentration in CeO2 with size range 40~60 nm. CV graphs depicted that the prepared electrodes obey the pseudo capacitive faradaic reactions behavior in nature. Maximum capacitance (925 F g-1) has been achieved by La0·05Ce0·95O2 which is better than numerous reported materials. The La0·05Ce0·95O2 also exhibited excellent GCD stability with 87.8% retention exhibiting it suitability for supercapacitor applications. Furthermore, the La0·05Ce0·95O2 showed the significantly higher H2 (9 μmol h?1g?1) production rate as compared to undoped CeO2 and La0·01Ce0·99O2, La0·03Ce0·97O2 samples. This higher production is attributed to the recombination rate and have strong substantial correlation with optical characteristics.  相似文献   
4.
Naringin (NAR), a major flavanone (FVA) glycoside, is a component of food mainly obtained from grapefruit. We used NAR as a food additive to improve the solubility and permeability of hydrophobic polyphenols used as supplements in the food industry. The spray-dried particles (SDPs) of NAR alone show an amorphous state with a glass transition temperature (Tg) at 93.2 °C. SDPs of hydrophobic polyphenols, such as flavone (FVO), quercetin (QCT), naringenin (NRG), and resveratrol (RVT) were prepared by adding varying amounts of NAR. All SDPs of hydrophobic polyphenols with added NAR were in an amorphous state with a single Tg, but SDPs of hydrophobic polyphenols without added NAR showed diffraction peaks derived from each crystal. The SDPs with NAR could keep an amorphous state after storage at a high humidity condition for one month, except for SDPs of RVT/NAR. SDPs with NAR enhanced the solubility of hydrophobic polyphenols, especially NRG solubility, which was enhanced more than 9 times compared to NRG crystal. The enhanced solubility resulted in the increased membrane permeability of NRG. The antioxidant effect of the hydrophobic NRG was also enhanced by the synergetic effect of NAR. The findings demonstrated that NAR could be used as a food additive to enhance the solubility and membrane permeability of hydrophobic polyphenols.  相似文献   
5.
Concerning the problem that the Neural Network speech enhancement algorithm cannot fully represent the nonlinear structure of speech due to feature selection,which leads to speech distortion.This paper proposes the combination of dynamic features with a new mask to optimize neural network speech enhancement.First,three features of noisy speech are extracted and spliced to obtain static features.Then,the first and second difference derivatives are obtained to capture the instantaneous signals of speech and fuse them into dynamic features.The combination of dynamic and static features completes internal complementarity of features and reduced speech distortion.Second,in order to enhance the intelligibility and clarity of speech at the same time,an adaptive mask is proposed,which can adjust the energy ratio of speech and noise as well as the ratio of the traditional mask and the square root mask.The Gammatone channel weight is used to modify the mask value in each channel to simulate the human auditory system and further improve the speech intelligibility.Finally,the simulation of multiple voices under different noise backgrounds shows that compared with different literature algorithms,the algorithm has a higher SNR,subjective speech quality and short-term objective intelligibility,which verifies the effectiveness of the algorithm.  相似文献   
6.
How to improve the sensitivity of the temperature-sensing luminescent materials is one of the most important objects currently. In this work, to obtain high sensitivity and learn the corresponding mechanism, the rare earth (RE) ions doped Y4.67Si3O13 (YS) phosphors were developed by solid-state reaction. The phase purity, structure, morphology and luminescence characteristics were evaluated by XRD, TEM, emission spectra, etc. The change of the optical bandgaps between the host and RE-doped phosphors was found, agreeing with the calculation results based on density-functional theory. The temperature-dependence of the upconversion (UC) luminescence revealed that a linear relationship exists between the fluorescence intensity ratio of Ho3+ and temperature. The theoretical resolution was evaluated. High absolute (0.083 K−1) and relative (3.53% K−1 at 293 K) sensitivities have been gained in the YS:1%Ho3+, 10%Yb3+. The effect of the Yb3+ doping concentration and pump power on the sensitivities was discussed. The pump-power–dependence of the UC luminescence indicated the main mechanism for high sensitivities in the YS:1%Ho3+, 10%Yb3+. Moreover, the decay-lifetime based temperature sensing was also evaluated. The above results imply that the present phosphors could be promising candidates for temperature sensors, and the proposed strategies are instructive in exploring other new temperature sensing luminescent materials.  相似文献   
7.
《Ceramics International》2022,48(2):1814-1819
Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ (x = 0, 0.2, 0.4) long persistent phosphors were prepared via solid-state process. The pristine Sr3Al2O5Cl2:Eu2+, Dy3+ phosphor exhibits orange/red broad band emission around 609 nm, which can be attributed to the electric radiation transitions 4f65 d1→4f7 of Eu2+. Upon the same excitation, the B3+-doped Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphors display red-shift from 609 nm to 625 nm with increasing B3+ concentrations. The XRD patterns show that Al3+ can be replaced by B3+ in the host lattice at the tetrahedral site, which causes lattice contraction and crystal field enhancement, and thereafter achieves the red-shift on the emission spectrum. The XPS investigation provides direct evidence of the dominant 2-valent europium in the phosphor, which can be ascribed for the broad band emission of the prepared phosphors. The afterglow of all phosphors show standard double exponential decay behavior, and the afterglow of Sr3Al2O5Cl2:Eu2+, Dy3+is rather weak, while the sample co-doped with B3+shows longer and stronger afterglow, as confirmed after the curve simulation. The analysis of thermally stimulated luminescence showed that, when B3+ is introduced, a much deeper trap is created, and the density of the electron trap is also significantly increased. As a result, B3+ ions caused redshift and enhanced afterglow for the Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphor.  相似文献   
8.
With the growing availability of hand-held cameras in recent years, more and more images and videos are taken at any time and any place. However, they usually suffer from undesirable blur due to camera shake or object motion in the scene. In recent years, a few modern video deblurring methods are proposed and achieve impressive performance. However, they are still not suitable for practical applications as high computational cost or using future information as input. To address the issues, we propose a sequentially one-to-one video deblurring network (SOON) which can deblur effectively without any future information. It transfers both spatial and temporal information to the next frame by utilizing the recurrent architecture. In addition, we design a novel Spatio-Temporal Attention module to nudge the network to focus on the meaningful and essential features in the past. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art deblurring methods, both quantitatively and qualitatively, on various challenging real-world deblurring datasets. Moreover, as our method deblurs in an online manner and is potentially real-time, it is more suitable for practical applications.  相似文献   
9.
Tuning the optical properties of active species embedded within a glass matrix by modifying the ligand environment is of interest for luminescence-based technologies, for example, in optical sensing, data transmission, or spectral conversion. Here, we discuss a facile synthesis procedure for a glass-crystal composite material comprising of bismuth (Bi)-doped zirconia within an aluminoborate glass phase. The approach offers tunable and broad photoemission characteristics in the visible spectral region from 400 to 750 nm. Incorporation of Bi ions into the crystal phase enhances the photoemission intensity by two orders of magnitude, with an external quantum efficiency of about 29%. At higher ZrO2 dopant concentration, we observe a red-shift of both the excitation and the emission bands to match commodity ultra-violet light emitting diodes as excitation sources. Encapsulation within the aluminoborate glass phase provides advantageous thermal behavior, with the emission intensity remaining at >80 % of its initial value up to a temperature of 400 K.  相似文献   
10.
邱甲军  吴跃  惠孛  刘彦伯 《计算机应用》2019,39(4):1196-1200
图像纹理增强过程中容易丢失平滑区域纹理细节,而分数阶微分增强虽然能够非线性保留平滑区域纹理细节,但对频率分辨率敏感。针对这个问题,提出一种基于小波变换的分数阶微分纹理增强算法,应用于平扫计算机断层扫描(CT)图像的肝脏肿瘤区域的纹理增强。首先,通过小波变换将图像感兴趣区分解成多个子带分量;其次,基于分数阶微分定义构造一个带补偿参数的分数阶微分掩膜;最后,使用该掩膜与每个高频子带分量进行卷积并利用小波逆变换重组图像感兴趣区。实验结果表明,该方法在使用较大分数阶次显著增强肿瘤区域的高频轮廓信息的同时,有效地保留了低频平滑的纹理细节:增强后的肝细胞癌区域与原区域相比,信息熵平均增加36.56%,平均梯度平均增加321.56%,平均绝对差值平均为9.287;增强后的肝血管瘤区域与原区域相比,信息熵平均增加48.77%,平均梯度平均增加511.26%,平均绝对差值平均为14.097。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号